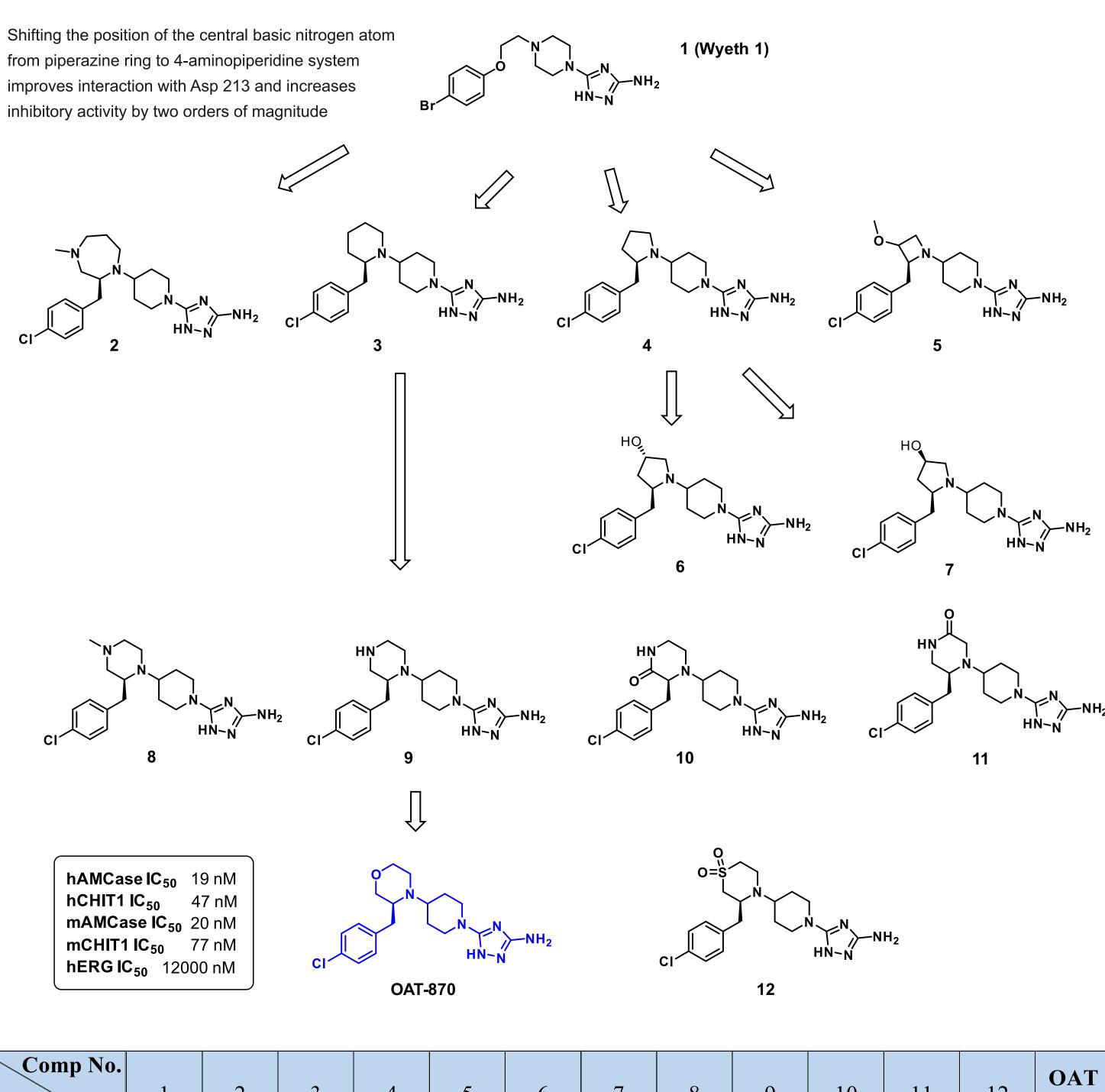


DEVELOPMENT OF DUAL AMCASE AND CHIT1 INHIBITOR OAT-870 AS A POTENTIAL THERAPEUTIC FOR INTERSTITIAL LUNG DISEASES

Marzena Mazur¹, Sylwia Olejniczak¹, Robert Koralewski¹, Barbara Dymek¹, Magdalena Salamon¹, Wojciech Czestkowski¹, Bartłomiej Borek¹, Agnieszka Bartoszewicz¹, Gleb Andryianau¹, Michał Kowalski¹, Krzysztof Matyszewski¹, Elżbieta Pluta¹, Agnieszka Zagożdżon¹, Piotr Sklepkiewicz¹, Jakub Golab², Michał Piotrowicz¹, Piotr Niedziejko¹, Mariusz M. Gruza¹, Jacek Olczak¹, Karolina Dzwonek¹, Adam Golebiowski¹


¹OncoArendi Therapeutics SA, Żwirki i Wigury 101, 02-089 Warsaw, Poland ²Department of Immunology, Medical University of Warsaw, 1A Banacha Str., 02-097 Warsaw, Poland

INTRODUCTION

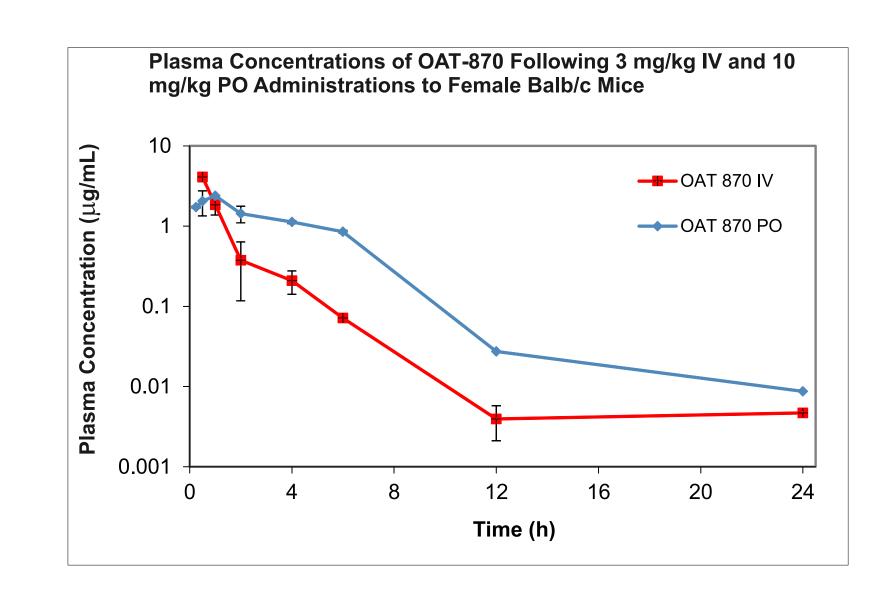
Acidic mammalian chitinase (AMCase) and chitotriosidase (CHIT1) are the enzymatically active chitinases, which have been shown to be involved in various lung pathologies such as idiopathic pulmonary fibrosis, sarcoidosis, chronic obstructive pulmonary disease and asthma. AMCase is activated during type 2 inflammatory responses in both murine models of airway inflammation and in asthma patients. Elevated CHIT1 levels and activity were found in the plasma and bronchoalveolar lavage (BAL) fluids from patients with interstitial lung diseases such as sarcoidosis or idiopathic pulmonary fibrosis.

Given these observations we envisaged that effective inhibition of chitinases may pave the way for the new class of orally administered therapeutics against variety of pulmonary diseases. Structure-based optimization of compound 1¹ led us to discovery of new class of potent dual chitinase inhibitors exemplified by compound **OAT-870**.

STRUCTURE ACTIVITY RELATIONSHIP STUDY

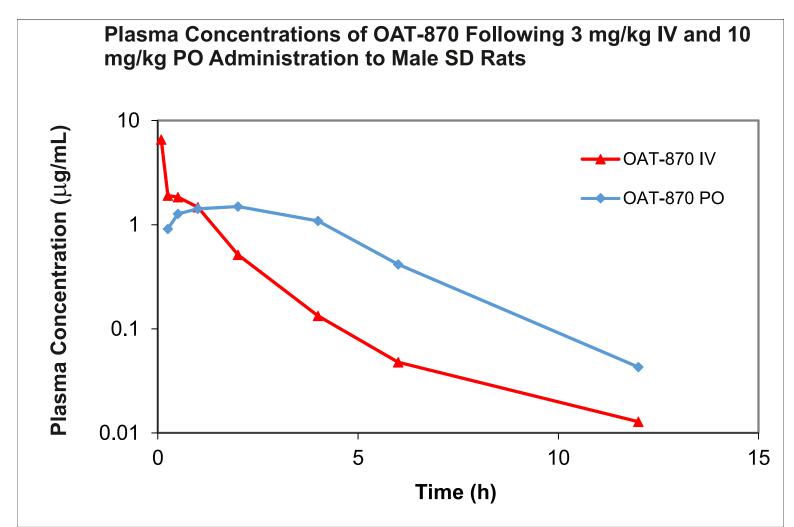
Comp No. IC ₅₀ [nM]	1	2	3	4	5	6	7	8	9	10	11	12	OAT 870
hAMCase	5450	8100	23	73	394	39	50	395	475	5400	1200	849	19
hCHIT1	6755	IA	75	58	521	82	87	17000	2000	IA	1400	4200	47
hERG	_	_	8300	4000	_	13000	55000	-	-	_	_	_	12000

OAT-870 was selected for further pharmacokinetics and *in vivo* study

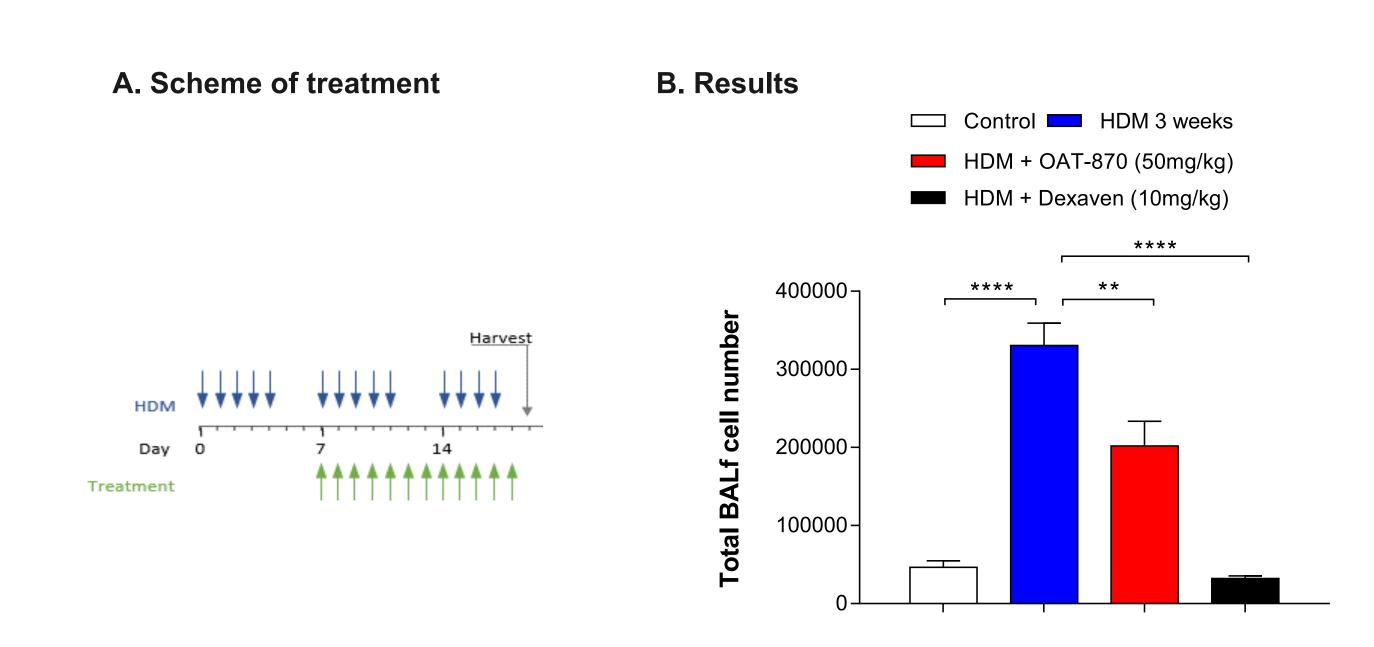

SYNTHESIS OF OAT-870

(e) HCI, EtOAc, rt; (f) S,S'-Dimethyl N-Cyanodithioiminocarbonate, K₂CO₃, MeCN, 82°C; (g) Hydrazine, MeCN, 82°C.

References


Reagents and conditions: (a) Chloroacetyl chloride, TEA, THF, 0°C to rt; (b) NaH, THF, rt; (c) BH₃xDMS, THF, rfx; (d) NaBH(OAc)₃, DCE, rt;

PHARMACOKINETICS IN MICE


OAT-870 Pharmacokinetic Parameters					
Route	IV	PO			
Dose [mg/kg]	3	10			
AUC _{0-inf} [mg*h/L]	4.76	11.09			
C ₀ or C _{max} [mg/L]	1.59	2.39			
T _{max} [h]	n/a	1.00			
CL [mL/min/kg]	10.51	n/a			
V _{ss} [L/kg]	1.09	n/a			
$T_{1/2}[h]$	2.50	n/a			
Bioavailability F [%]	n/a	70			

PHARMACOKINETICS IN RATS

OAT-870 Pharmacokinetic Parameters					
Route	IV	РО			
Dose [mg/kg]	3	10			
$AUC_{0-inf}[mg*h/L]$	4.98	8.01			
C ₀ or C _{max} [mg/L]	2.15	1.56			
T _{max} [h]	n/a	1.5			
CL [mL/min/kg]	2.02	n/a			
V _{ss} [L/kg]	3.86	n/a			
$T_{1/2}[h]$	7.95	n/a			
Bioavailability F [%]	n/a	48			

MURINE HDM-INDUCED ALLERGIC INFLAMMATION MODEL

Therapeutic efficacy of **OAT-870** was determined in a murine 3-week HDM-induced asthma model. Oral administration of OAT-870 (50 mg/kg) in curative treatment scheme (day 7-19) exhibited significant reduction of CD45-positive leukocytes influx into the lungs (Fig.B).

Therapeutic efficacy of **OAT-870** has been also evaluated in the bleomycin-induced pulmonary fibrosis model in mice showing promising results.

CONCLUSIONS

OAT-870 is a highly potent dual AMCase and CHIT1 small molecule inhibitor of lownanomolar activity against both human and murine enzymes and with very good pharmacokinetic properties. Once daily 50 mg/kg oral doses in mice showed significant anti-inflammatory efficacy in acute HDM-induced allergic airway inflammation model. Additionally, OAT-870 was further profiled in the AMES test (no genotoxicity observed). Also, potential off-target in vitro effects of OAT-870 were evaluated in the CEREP Diversity panel consisting of 72 binding and 27 enzyme assays and the only significant interaction revealed was that with dopamine transporter (DAT; 95% inhibition at 10µM). These results led us to discovery of compound **OATD-01**, which, as of now, undergoes phase I of the clinical trials.

fibrosis through chitotriosidase inhibition"

